
D-..63 055 THE DEVELOPMENT OF DESIGN GUIDES FOR THE IMPLEMENTATION I E
OF MULTIPROCESSIN (U) UNIVERSITY OF MANCHESTER INST OF
SCIENCE AND TECHNOLOGY (ENGI D ASPINALL SEP 65

UNCLASSIFIED UMIST/RRDC/i RADC-TR-84-271 F/G 9/2 U



4.2

EA

L 2m

111111-0O

IIIIIN *IIII Hil
1.25 jj(-4

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDAROS- 963-A

% 
.



inp

Lo RADC-TR-84-2730) Final Tchnical Report

(V) September 195
CD

< THE DEVELOPMENT OF DESIGN
GUIDES FOR THE IMPLEMENTATION OF
MULTIPROCESSING ELEMENT SYSTEMS

The University of Manchester

Professor D. Aspinall

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441.5700



This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-84-273 has been reviewed and is approved for publication.

APPROVED:'7/( 6 ~

FREDERICK A. NORMAND
Project Engineer

APPROVED:

RAYMOND P. URTZ, JR.
Technical Director
Command and Control Division

FOR THE COMMANDER: -_--. "

DONALD A. BRANTINGRAM
Plans Office

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (COTC) Griffiss AFB NY 13441-5700. This will assist us In main-
tainlng a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.



-- ' ~• - '

UNCLASSIFIED iII U
SECURITY CLASSIICATION OF THIS PAGEl,

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED /A
2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION, AVAILABILITY OF REPORT

N/A Approved for public release; distribution
1 2b DECLASSIFICATIONi DOWNGRADING SCHEDULE unlimited.
N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

MIst/R /RADC-TR-84-273

6a NAME OF PERFORMING ORGANIZATION 1b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION ,-.

The University of Manchester (if applicable)
Rome Air Development Center (COTC)_ _ _ _ _ _ _

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
Institute of Science and Technology Griffiss AFB NY 13441-5700
PO Box 88
Manchester M60 IQD England "____ _.;

I., Ba. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) F49620-80-C-0012

Rome Air Development Center COTC
Sc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

Griffiss AFB NY 13441-5700 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO. NO ACCESSION NO
62702F 5.581 17 16 .

.N < 11 TITLE (include Security Classification)

THE DEVELOPMENT OF DESIGN GUIDES FOR THE IMPLEMENTATION OF MULTIPROCESSING ELEMENT SYSTEMS

12 PERSONAL AUTHOR(S) ?'

Professor D. Aspinall

13a. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNTFinal FROM 1980 TO 1984 September 1985 88 ':%

16. SUPPLEMENTARY NOTATION

IA.N/A

17. COSATI CODES IB SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Distributed Systems

09 02 Real-Time Systems
1I Multi-Microprocessor Interconnections
19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Multi Processing-Element Systems are complex and it is important that designers have as

. " much help as possible in arriving at an efficient and reliable design. The primary

objective of the research project was to identify aspects of a design which could be

investigated through simulation. Two aspects of the problem were identified. The first

of these was the interconnection structure or system by which the separate processing

elements are interconnected. The second concerned the language to be used in order to
design the processes to be distributed throughout the Multi Processing-Element Systems.1

20. DISTRIBUTION / AVAII ABILITY OF ABS/TRACT 21ASTRACT SECURITY CLASSIFICATION
(RNCIASSIFIEON1 MIrO [.1 SMI A, PPT UNCLASSIFIED

2Z;a NAM_ OF RESPONSIBLE INDIVIDUAL 227b rF1PHONE (Include Area Code) 22c OFFICE SYMBOL

Frederick A. Normand (31.5) 330-2925 R COTC)

DO FORM 1473,84 MAR 81 APR editon may be Lsed ur'tI exnaustoI OF THIS PAGC

Ail a :1 CL ASIFIED

=" '; "- "- - -" "' -- '- "- . -L - . "- "-""- " ' ' "' - "" % " . """ """ " "- 
°
• -"• -" " ." " "." -" . ," -%,



CONTENTS

page

Paragraph 1 INTRODUCTION................................1I
1.1 Interconnection Structure................ 1
1.2 Language Implications.................... 1
1.3 Experimental System...................... 2
2 DEVELOPMENT OF A SIMULATION AND

THEORETICAL MODEL FOR A TOKEN PASSING

RING........................................ 3

2.1 Introduction............................ 3I
2.2 Ring Simulation Model.................... 3
2.2.1 Simulation Model Features................ 4
2.3 Theoretical Model for a Token

Passing Ring............................ 5
2.3.1 Stable Systems..........................7 .. :

2.3.2 Unstable Systems........................ 8
2.3.3 Comparison of the results produced

by the Simulation and Theoretical
Models................................... 9

2.4 Conclusions............................ 13
3 PERFORMANCE ANALYSIS OF A TOKEN PASSING

RING....................................... 14
3.1 Introduction........................... 14
3.2 Performance Metrics..................... 14
3.2.1 Throughput Demanded..................... 14 .

3.2.2 Throughput Carried...................... 14
3.3 Performance Curves...................... 17
3.4 Performance Variables ................. 17
3.4.1 N node ring - one node active.......... 18
3.4.2 N node ring - all nodes active..........18
3.4.3 N node ring - some nodes active.........19
3.5 Performance Measurements................ 19
3.5.1 N node ring - one node active.......... 19
3.5.2 N node ring - all nodes active......... 23
3.6 Conclusions............................ 30

-~-.4 IMPLEMENTATION OF CHILL SIGNALS .

COMMUNICATION PRIMITIVES ON A
DISTRIBUTED SYSTEM........................ 31

4.1 Introduction........................... 31
4.2 The CHILL Signals Primitives............31
14.3 Implementation Requirements.............33
4.4 Modelling of the CHILL Signals

Primitives.............................. 3
4.3 Results................................. 40
1.5.1 Throug-hput Characteristics..............40
4.5.2 Effect of Signal Priority............... 43
4.6 Conclusions............................ 43

5 MICROPROCESSOR DEVELOPMENT ENVIRONMENT .. 46
5.1 Introduction........................... 46I

5. icroprogram Development System . .... 46
~.3.3 Conclusions............................ 48

6RELATED WORK.................... .......*'49

6.1 Design of 'sin 8086 Node for CYBA-M1.. 49
CONCL:S IONS................................. 32

%4

4..-l
P 

* ? .r



CONTENTS

Pale

APPENDIX A: UNIDIRECTIONAL RING SIMULATION MODEL.............. 53
APPENDIX B: THEORETICAL MODEL OF A BIDIRECTIONAL

TOKEN PASSING RING................................ 71
REFERENCES....................................................... 73

kN

~~iv



LIST OF FIGURES

Page

Figure 3.1 Ring Performance 1: Variable N ............. 20
3.2 Ring Performance 2: Variable N ............. 20
3.3 Ring Performance 3: Variable N ............. 21
3.4 Ring Performance 4: Variable N ............. 21
3.5 Ring Performance 5: Variable N ............. 22
3.6 Ring Performance 1: Variable S ............. 24
3.7 Ring Performance 2: Variable S ............. 24
3.8 Ring Performance 3: Variable S ............. 25
3.9 Ring Performance 4: Variable S ............. 25
3.10 Ring Performance 1: Variable Q ............. 26
3.10 Ring Performance 2: Variable Q ............. 26
3.11 Ring Performance 2: Variable S ............. 27
3.12 Ring Performance 1: Variable S ............. 27
3.13 Ring Performance 2: Variable S ............. 28
3.15 Ring Performance 4: Variable S............... 28
3.16 Ring Performance 1: Variable Q/Fixed S ..... 29
3.17 Ring Performance 2: Variable Q/Fixed S
4.1 Typical Architecture of a Distributed

System .......... ........................... 32
4.2 Algorithm for the SEND Signal Operation...... 35
4.3 Algorithm for the RECEIVE CASE Operation 36
4.4 Mutual Exclusion Mechanisms for Access

to the Data Structure ....................... 38
4.5 Model Architecture .......................... 41
4.6 Throughput Characteristics of the DSM

Models ...................................... 42
4.7 Graph Showing Effect of Signal Priority ..... 445.1 Overall Microprogram Development System ..... 47
6.1 Block Diagram of 8086 Node Interconnection

System ...................................... 50
6.2 Block Diagram of SDK86 and CYBA-M

Interface ................................... 5 1
A.1 CYBA-M Multimicroprocessor System ........... 54
A.2 Simple Ring ................................. 55
A.3 Performance Results ......................... 57
A.4 Basic Ring Simulation Requirements .......... 59
A.5 Global Memory Data Structure ................ 61
A.6 Distribution of the Global Data

Structure ................................... 63
.. A.7 Node Data Flow .............................. 64

A.8 Injection of Host Messages .................. 66
A.9 Finite State Machine Control ................ 68
A.10 Alternative Configurations of the

Data Structure .............................. 69

-~ Accesion For

NTIS CRA&I
DTIC TAB 0 C
Unannounced 0
Justification

By ....................
2 'J Dit ibution

Avaiiability Codes

Avail and I or
DistA Special

S. .. .. . . . .



1. INTRODUCTION

The prospect of low cost computing components provides the
designer of complex information processing systems with the
possibility of using many processing elements operating concurrently.
Such Multi Processing-element Systems are clearly going to be
complex and it is important that the designers of such systems have
as much help as possible in arriving at an efficient and reliable
design. The primary object of the research project was to attempt
to identify aspects of the design which could be investigated on
a particular example of a Multi Processing-element System. Two
aspects of the problem were identified. The first of these was the
interconnection structure or system by which the separate processing
elements are interconnected. The second concerned the language to
be used in order to design the processes to be distributed throughout
the Multi Processing-element System.

1.1 INTERCONNECTION STRUCTURE

Several alternative interconnection structures have been
-. identified and placed in a taxonomy by Anderson and Jensen.

An example of a direct shared memory exists in the Department of
Computation at UMIST as a research vehicle. A particular feature
of this system is a collection of conventional microcomputers
connected through a direct shared memory of high performance.
Measurements of the performance of this system (1) have indicated
that there is very little degradation in performance as the number

V of active processing elements increases. It is therefore possible
to undertake simulation exercises on this structure which simulate
different interconnection structures in a realistic manner. Initial
experiments were carried out to identify certain components of
interconnection structures which could be simulated effectively in
this direct shared- memory system. These were found to be cumbersome
in use and it was decided to abandon this general purpose approach
and concentrate upon the development of one particular interconnect-
ion structure on the direct shared memory and to investigate this
one rigorously. Of all the various interconnection structures that
were possible, it was decided to concentrate upon the token passing
ring system. An extensive model to simulate a unidirectional ring
has been developed and used in several experiments. Through these
experiments it has been possible to extract certain important
parameters which characterise the performance of a token passing
ring. These experiments lead to the development of theoretical
models which enable the analysis of the performance of such rings.

1.2 LANGUAGE IMPLICATIONS

The design of Multi Processing-element Systems will depend
upon the quality of real time language to be used. Several real
time languages have been developed recently and it is interesting
to consider the interaction between the structure of Multi Processing-
element Systems and the execution of programs written in these
languages. A detailed investigation of the CHILL language has
indicated that there are likely to be serious problems in the
implementation of certain central features on distributed systems. -

Some features of these languages suggest that a ring structure
would be perfectly adequate for their needs, while other features
seem to demand a shared memory approach. These conflicting require-
ments will have an effect upon the performance of a complete Multi
Processing-element. An important part of the investigation has been



to consider the primitives of such real time languages and the
implementation of these languages upon Multi Processing-element
Systems.

1.3 EXPERIMENTAL SYSTEM

Investigations have been carried out upon a Multi Processing-
element System based upon a direct shared memory. An important
feature of this system has been the existence of a comprehensive
development environment which has made it possible to develop the
programs necessary for the investigation. At one stage of the
project, it was felt necessary to improve the performance of certain
nodes of the Multi Processing-element Systems in order to extend
the scope of the investigation. Attempts have been made to achieve
this by using higher performance microprocessors and by developing a
special node based upon the "bit slice".

Towards the end of the project, the value of the multiprocessor
simulation tool and the theoretical models for the token passing ring
were identified. It is believed that this preliminary investigation
of the design guide for the implementation of Multi Processing-
element Systems has produced some important metrics for the character-

4 isation of such systems and it is now possible to continue develop-
ment of these design guides through the use of simulation techniques
on a conventional uniprocessor system.

Furthermore, the limitation of the processors within the system
and their inefficient support of high level languages were appreciated.
In parallel with the experiments on the Multi Processing-element
Systems simulation models were constructed in a high performance
uniprocessor. This experiment has suggested that it is necessary to
gain an understanding of the critical parameters by experiments with -

a system which includes genuine, rather ihan simulated, concurrency,
but once this understanding can be expressed in a consistent set of
parameters, then the convenience of a high performance uniprocessor
supporting a concurrent high level language has much more to commend
it, as a vehicle for simulation experiments.

A %,,



2. DEVELOPMENT OF A SIMULATION AND THEORETICAL
MODEL FOR A TOKEN PASSING RING

2.1 INTRODUCTION

The modelling of multiprocLssor interconnection structures on
a Direct Shared Memory (DSM) multi-microprocessor has formed a large
part of the work performed on this contract. One such interconnect-
ion structure is the "ring", where the processing elements are
connected in a circular arrangement. A general ring simulation model
has been developed and applied to the analysis of a "token passing .
ring". In addition, a theoretical ring performance model has been
derived for predicting the performance characteristics of token
passing rings under varying traffic flow pattern conditions. The
model has pr.ved to be of value in the development of guidelines for
predicting the operational characteristics of ring structures. The
theory developed has been applied to the analysis of unidirectional
and bidirectional ring structures.

An overview of the ring simulation model is presented, together
with the derivation of the performance model. Finally, preliminary
results are presented which indicate the close correlation between
results obtained from the simulation model and the theoretical model.

2.2 RING SIMULATION MODEL

Many ring simulation models have been proposed in the literature
3(K , 4), which are implemented on single processor machines with

imited resources, to model the inherent parallelism present in a
ring structure. The simulation model, developed at UMIST, overcomes
these deficiencies by implementing the model on the shared memory
multiprocessor, CYBA-M (5). The ring nodes map directly onto
processing elements and the ring connection structure can be emulated
in the shared memory.

CYBA-M consists of 15 microprocessors (18080s) which communicate
through a shared "global memory" of 16K bytes. Each microprocessor
has a dedicated local, private memory of 32K bytes. The micro-
processor memory pair is known as a "processing element". The 16th
processing element is a PDP 11/34, which is used to load programs
and data into the different memory areas of CYBA-M. The PDP 11/34
executes an "operating system" known as EMU (6), which provides
run-time operating and program debugging facilities for CYBA-M.

The ring simulation model uses a pair of processing elements
to model the operation of a "node" in a token passing ring. One of
the processing elements acts as "host processor" and is used for user
application processes. The other processing element acts as a
"communications" processor, which interfaces the host processor to
the ring. The ring interconnection structure is modelled by data
structures within the global memory, see Appendix A.

The first version of the ring simulation model emulates a
unidirectional token passing ring, which uses the HDLC message
transmission format (7). A message generated by the host processor

* enters the output queue of the communications processor. The output
queue acts as FIFO buffer. The communications processor will then
encapsulate the message in the HDLC format and wait for the reception
of the "token" before transmitting the message, one byte at a time,
onto the ring. When the token is received, the message is streamed

.q 3
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onto the ring and the token is appended. The message is relayed by
the intervening nodes to its destination. The destination commun~c-
ations processor receives the message, strips of f the HDLC format
and passes it to the host processor. The message is also removed
from the ring. If a node receives the token and its output queue
is empty, the token passes to the next node having experienced a
one byte delay. Further details of the message transmission protocol
are given in Appendix A.

*2.2.1 Simulation Model Features

The operational characteristics of the ring can be defined
interactively for any simulation run. The following parameters -re

* .' defined prior to a simulation experiment.

(a) The number of nodes present in the ring. The maximum
number of nodes is seven, due to the limitation of the
number of processing elements in CYBA-M.

(b) The depth of the output queue for the communications
processors.

(c) The state of each node: active or inactive. An active
node generates messages which are streamed onto the ring.
An inactive node does not transmit messages onto the ring.

(d) The length of the message to be transmitted by each
active node. The message length is fixed for the
duration of a simulation run. The HDLC protocol
encapsulation adds five bytev to the length of a
"message packet".

(e) The destination node addresses of messages trans,,mitted
by an active node. The address may be fixed or
randomised.

(f) The number of messages to be transmitted b an active
node during a simulation run.

(g) The message transmission mode: constant or exponential.
J In the constant transmission mode, the message transmission

rate is constant. In the exponential mode, the message
transmission rate conforms to a Poisson distribution
centred on a specified mean.

The operation of the simulation model is tied to a rigidly
defined clock and there is a one byte movement around the ring in

* every simulation clock cycle. Thus, the simulation time can be
normalised to operate with a ring of any raw data transmission rate;
for example, if the ring speed was 10 Mbts/s, then a simulation
clock cycle would represent 800 ns of real time. The simulation
model provides the following statistics for every message transmitted
by an active node:

(a) Message source, message destination and message number.

(b) Message Send Request Time (SR): This is the time, in
terms of simulation clock periods, when a host inserts
a message into the communications processor output queue.

4
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(c) Ring Accept Time (RA): This is the time, in terms
of simulation clock periods, when the communications
processor streams the first byte of a message onto the
ring.

(d) Ring Remove Time (RR): This is the time, in terms
of simulation clock periods, when the first byte of
a message arrives at the communications processor

* .r 1 of the message destination node.

(e) Destination Accept Time (DA): This is the time, in
terms of simulation clock periods, when the last byte
of a message is received by the destination host
processor.

The initial state of the simulation model is fixed for every
simulation run with the token (one byte long) resident in node 0 at
simulation time = 0.

Before proceeding with an analysis of the performance of a
token passing ring under varying traffic pattern condtions, we will
develop the theoretical (analytical) model of the ring, based on
our simulation model.

2.3 THEORETICAL MODEL FOR A TOKEN PASSING RING

The theoretical model establishes stability criteria for token
passing rings, and determines the saturation state characteristics
for unstable systems. A ring is said to be stable if the operation
of the ring remains "steady" in time; that is, a stable system

C operates in a "normal" state without message congestion and output
queue overflows. The saturation state is referred to as the state
where the ring is fully utilised and the rate of message transports
around the ring cannot be increased.

The model is based on a number of formal parameters:

(a) Number of nodes in the ring (N).

(b) Length of output queue (Q):
Each communications processor has the same length output
queue.

(c) Average node packet length (S.):

The average length of each message generated by node i,
including the HDLC headers. If a node is inactive
then S.i = 0.

(d) Average message generation period (Di):
* The average period between two consecutive messages

generated by the host processor of node i. Hence l/D~

represents the average message injection rate into the
output queue of node i.

.5-5
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(e) Scan Time (ST):
- ~ The scan time is defined as the time taken for the

token byte to complete one cycle of the ring. The
minimum scan time for the token is achieved when no
messages are transmitted onto the ring. As the
token is delayed for one simulation clock period at
each node, then the minimum scan time is N simulation
clock periods for an N node ring.

(f) Mean Scan Time (MST):
This represents the mean scan time for the token. The
duration of the scan time will vary according to the
message traffi. generated by each node. However, at
a constant message sending rate for each node, the
ring scan times are periodic and it is possible to
define a mean scan time. The derivation of the mean
scan time is discussed later.

(g) Node Utilisation Factor (U.):

The node utilisation factor is defined as Si/D i for

node i,that is, the time taken to transmit the message
from a node. Hence, the utilisation factor represents
the ratio at which work is generated by a node to the
capacity of a node for performing work. Therefore,
for a node to operate correctly U. must not exceed

i
unity. U. also represents the fraction of the time
node i is busy transmitting messages. L

- (h) Ring Utilisation Factor (R):
The ring utilisation factor represents the capacity of
the ring for conveying messages. It is similar to Ui
and is defined as the fraction of the time the ring is
busy servicing the messages generated by the nodes.

The ring allocation strategy is similar to polling,
because at any one instant only one node has access
to the ring. Each node is, therefore, polled by the
token in a round-robin fashion. The amount of work
generated by the nodes is equal to the sum of the
work generated by the individual nodes; that is, the
sum of the individual node utilisation factors.

However, there is an additional overhead due to the
presence of the token and the ring utilisation factor
must contain a term to account for the fraction of the
time spent in circulating the token in the ring. It
takes N simulation clock periods for the token to
complete one cycle of an N node ring, with no messages
being generated. Therefore, we define D. such that

For all Di, 0 i 4 N- i, i # j : 1

6



Node j is the fastest message generator in the ring.
As each message must be followed by the token, the -

* frequency of the token is governed by the fastest
message generating node, and is equal to l/Dj. The
fraction of time spent in transporting the token around
the ring is, therefore, N'/D .. The ring utilisation
factor is

i =N -1

R (2.1u.

i1 1

2.3.1 Stable Systems

For a ring to maintain operation in the "unsaturated' region,
~; the ring utilisation factor must not exceed unity. Therefore, the

condition for ring stability is:

i = N - 1
N + Z7 U.<1 ... (2.2)

i 0Q

For allD, 0~ i ~N 1, it <
D3 D

The above condition holds for every ring structure and the
case of no message senders, the frequency of the token (1/D) is
11N, and hence R 1

The above condition can be rewritten as:

.3 4- /2.-

D.0

Cousily the case, R =1, which only occurs when the ring is
flyutilised either by the token alone or, more generally, when

the message injection rate into the output queue of node j is equal
to the rate of transmission of messages from node j. This repre-
sents the steady state of message transport around the ring, and,
therefore, D. must represent the mean scan time of the token.

7 ~



Therefore,

when R = 1, Dj = MST ... (2.4)

Substituting for D i in equation 2.3, we obtain a value for the mean
scan time of stable systems when R = 1:

N+ s.
MST

i =N -1 .

1 u i  ... (2.5)
=0

For all Di - , i j:D -

2.3.2 Unstable Systems

For an unstable system, the main parameter to be determined is

the ring saturation time; that is, when the output queue of a node
overflows. If the system is unstable then saturation is achieved
when the output queue of the fastest node overflows; that is when
l/Dj < l/MST. In this case, the rate of injection of messages into
the output queue is greater than their rate of departure when the
ring is fully utilised (R = 1). Therefore, after a time, Tsat, the
output queue overflows. We can apply simple queuing theory (7) to
determine the saturation time of the fastest sender in the ring.

Let Min (t) and Mout (t) represent the average number of
arrivals and departures of messages from a node in the interval
(0, t), respectively. It can be shown (8) that

Min (Tsat) = trunc ... (2.6)

Mout (Tsat) = trunc LMi-1 ... (2.7)

Q = Min (Tsat) - Mout (Tsat) ... (2.8)

Thus, it is possible to predict the output queue length requir-
ed for a node, given a specified saturation time.

It is also possible to develop simulation and theoretical models
for a bidirectional token passing ring. The same basic premises
apply to a bidirectional ring and a preliminary analysis of this ring
type is given in Appendix B.

8
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2.3.3 Comparison of the results produced by the Simulation and
Theoretical Models

A number of simulation runs have been performed to assess the
correlation of the results produced by the simulation model and the
theoretical model. In the majority of the simulation runs, the
chosen ring configurations were operated close to their saturation
points; that is, with R and approximately 1. It should be noted
that throughout the analysis the destination of a message plays no
part in the stability of a token passing ring. However, the loca-
tion of the "fastest" message sending node does produce slight
perturbations in the saturation time of the ring : this is
discussed below.

A major problem in the simulation model is the determination of
the mean scan time for the token. One of two methods have been
adopted in the calculation of the MST in the theoretical model:

(a) The most convenient method for calculating the MST of
a ring is to allow the fastest node to transmit a large
number of messages,say k messages, and obtain a value
for MST by

.

.42., RA I
MST = k .... (2.9)

. ~-. where RAk is the time when the k'th message has been

accepted onto the ring.

In the case of unstable systems, the value of k is
limited and it is the number of the last message deliver-
ed onto the ring before the node saturated. This method
is extremely simple and is an effective way to obtain a
value for MST. However, the choice of k is critical
as it must be large enough to allow the ring to reach a
'steady state'.

(b) It has been noticed (10) that in certain cases, the token
scan times form a repetitive pattern after n scans. If
we allow a certain number of messages to be transmitted
onto the ring, say mmessages, and monitor the ring accept
times for the next n messages, then the MST can be
obtained from the following formula

i m + n

MST =(RAi +1 RAi)

i m

.. ,(2.10)

9
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This method is more accurate and relies on the ring
utlisation factors of all the nodes, except the fastest

.. node, to be "exact" fractions; otherwise, no repetitive
scan pattern emerges.

. An additional problem is due to 'start-up' transients produced
- by the ring simulation model before it reaches a steady state. This

is due to the token always being at node 0 at the start of a simu-
lation run. Hence, the position of the fastest sender, relative to
node 0, affects the time of the first ring accept which leads to
variations in the ring saturation time, Tsat. However, this does
not affect the validity of the theoretical model.

Two examples will be used to illustrate the correlation between

the simulation and the theoretical model. *

(a) EXAMPLE 1

The ring consists of three nodes with the following characteris-tics: q

Node S. D- U

-. (i) (by-es) (simuI-tion clock (bytes per simulation
period) period)

0 6 18 6/18

1 6 15 6/25

2 6 25 6/25

The ring utilisation factor can be obtained from equation 2.1.
Note all nodes have a constant sending rate:

6 6 6 3
R = 6 +2 6 + + =0.98

Therefore, the ring is stable (R < 1), which was confirmed by
a long simulation run. The mean scan time can be predicted
from equation 2.5.

3 + 6 173LAST + 73

The MST of the token may be obtained from method (b) as both
U. U1 and U2  are exact fractions and the token scan time repeated

every 13 scans. It was found that after 13 messages:

MST = 225 = 17.31 A

I0 Iv.
13I
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If the average message generation period (D.) for node 0 is
changed from 18 to 17,
then from equation 2.1:

R 6 + 6 6 + 3
17 + - 1.01

Therefore, the ring is unstable and the simulation model indica-
ted that the ring saturation time, Tsat = 2363. By varying the
position of the fastest sender node inthe ring, Tsat will vary
(for the reasons outlined above). The experiment was repeated
with the position of the fastest node varied in each run. The
results are given below:

Fastest Node Tsat Min(Tsat) Mout (Tsat)
' position predicted actual predicted actual

0 2363 139 139 135 135

1 2262 133 133 129 129

2 2364 139 139 135 135

In all cases, the length of the output queue for each node (Q)
was equal to four messages, which is confirmed by the predicted
and actual values.

(b) EXAMPLE 2

The ring consists of four nodes with the following characteris-
'.-, tics:-

SNode Si D. Li

0 7 43 7/43

", 1 9 26 9/26

2 6 50 6/50

3 10 1 50 10/50

The ring utilisation factor, from equation 2.1, is:

R 7 7 9 + 6 1 0 -0.98
43 26 5U 50 26

11 ,
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Therefore, the ring was stable, which was confirmed by a long
simulation run. The mean scan time can be predicted from

'I' equation 2.5:

4 + 9MST6 10 = 25.137- + 6--+ -)

The MST of the token may be obtained from method (a) as Uo is
not an exact fraction. The simulation results indicated that
the 350'th message (the last one for the simulation run) was
accepted onto the ring at time,RA34 9 = 8790.

Hence, by equation 2.9:

MST 8790 = 25.11

If the average message generation period (Di) for node 1, is

changed from 26 to 25, then from equation 2.1:

R. 4 + 9 + 6 + 10 + -5 = 1.003

Therefore, the ring is unstable and the simulation model
indicated that the ring saturation time, Tsat = 8826. Again,
by varying the position of the fastest sender node in the
ring, Tsat will vary. The experiment was repeated with the
position of the fastest node varied in each run. The results
are given below:

Fastest Node Tsat Min( Tsat) Mout Tsat)

position predicted actual predicted actual

0 9475 379 379 375 375

1 8826 353 353 349 349
2 10776 431 431 427 427

3 10126 405 405 401 401

,'A. In all cases, the length of the output queue for each node (Q) -

was equal to four messages, which is confirmed by the actual
and predicted values.

,-..
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2.4 CONCLUSIONS

A general simulation model has been developed for analysing the V
characteristics of ring interconnection structures. The simulator

I is executed on the multi-microprocessor CYBA-M. The current version
of the simulation model has been applied to the study of a token
passing ring. In addition, a theoretical model has been derived for
predicting the performance of the same ring structure. The definition
of the theoretical model is consistent with the simulation model;
however, they are independent and the theoretical model is not limited
by the constraints imposed by the simulation model. The theoretical
model has been developed through queuing analysis and it may easily
be extended to cover other ring message passing protocols. In fact,
Hayes and Sherman (11) adopted a similar approach in their analysis K.

N-: of the Pierce Ring, whose operation is based on the asynchronous
multiplexing of fixed size message packets onto a ring.

Preliminary results indicate a close correlation between the two
models and additional experiments performed on the simulation model
are presented in the next chapter.

13
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4'3. PERFORMANCE ANALYSIS OF A TOKEN PASSING RING

3.1. INTRODUCTION

A stability theory has been developed for the analysis of
unidirectional (and bidirectional) token passing rings. Early
experiments have proved the validity of the stability theory. It
is now necessary to extend these experiments in order to evaluate
the general performance characteristics, whilst applying the
stability theory,'where appropriate, to predict their behaviour-
pattern.

A set of performance metrics are defined, which permit
"standard" ring measurements to be performed in order to investigate .%
the effects of varying different ring parameters. Subsequently, a
set of standard performance curves are defined, together with the
variables that affect the performance characteristics of a token
passing ring (13). Finally, a set of actual performance measurements
are given which indicate the features of a token passing ring.

3.2 PERFORMANCE METRICS

There are three basic performance measures for a ring:
throughput demanded, throughput carried and message delay. The
measures need to be determined on an individual node basis and for
the ring as a whole.

3.2.1 Throughput Demanded

Throughput demanded is a measure of the required data transfer
rate for a node, in terms of bits/s. It is defined as the ratio of
the packet length to be transmitted by a node to the rate at which
the messages are to be transmitted. Therefore, the throughput
demanded for node i is:

TD 0 i N-lI... (3.1)

VThus, TD i is the same as the "node utilisation factor" defined
in the theoretical model.

The throughput demanded for the complete ring; that is, all N
ring nodes is defined as:

i =N -1
RD =TDi1 0 -< i -< N 1 1......(3.2)

i =0

Note that RD does not include the token overhead, as this is the

function~ of the ring protocol only.

3.2.2 Throughput Carried

Throughput carried is a measure of the data transfer rate
achieved by a ring node, in terms of bits/s. The throughput carried
by a node may be measured in one of three ways:

14
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METHOD 1:

By allowing a fixed output queue length for each node, the
throughput carried by each node is defined as:

S 2
TCi = . 0 < i < N - 1 .... (3.3)

M. represents the number of messages generated by node i

which are delivered to their destination nodes during the working
period of the ring; that is, from start time to the time when the
ring saturates, Tsat. The saturation time refers to the time when
at least one node output queue overflows.

METHOD 2:

In this case each node is provided with output queues which
are long enough to prevent queue overflows. The necessary through-
put carried measurements are, thus, undertaken whilst the ring is
in operation. The throughput carried by any node can be obtained
at any arbitrary time, Ts: the snapshot time. A snapshot of a node
is taken at time Ts and the number of messages present in each out-
put queue is obtained. The throughput carried for node i is
defined as:

TC. = ..... (3.4)
1 DA,

SRi,m <Ts<SRi, m +

Where m represents the message nimber and DAi m is the time

when the m'th message of node i is accepted by the destination host.
SRi, represents the time of entry of the m'th message into the

output queue of node i, which is the last message to be entered
before the snapshot is taken. The throughput carried is determined
by the 'throughput' of the last message to be entered into the
output queue.

METHOD 3:

Nru In this case, which is similar to Method 2, the throughput car-
ried for a node is obtained by measuring the throughput of all the
messages which have been transmitted up to the snapshot time, and
then calculating the average throughput of the node:

TC - - ..... (3.5)

SR ,.<Ts.< SR.HI. i,m+ 1
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A The throughput carried by the ring, that is, all N nodes,

is defined as:

~~~~~~i =N - 1T i ,... 36

II
Rc = 1 0 i < N - 1 . (3.6)

i =0

3.2.3 Message Delay

Message delay is defined as the elapsed time between the
generation of a message by host i and its reception by host j.
Therefore, for message j of node i, the message delay is defined
as:

MDj,i = DAj,i - SRj,i (3.7)

The total message delay for node i can be obtained by takinga snapshot of the node at time Ts and calculating the delay from:

j M

MD MD ..... (3.8)

-- 0i < N - 1

±\.,m - Ts SRim 

The delay is normalised with respect to the message transmis-
* sion time (Si) , and can be compared to the 'transfer delay' perfor-

mance metric as defined by Bux (14).

The total message delay for the delay ring, that is all N
nodes, is defined as:

M D =I O.< i < N 1 .. . (3.9).-"

i =0

An expression for MDi can be derived from the theoretical ring
model, in terms of the ring parameters. If the MST > D., then
message delays start to increase as a queue of messages is formed.
The delays form an arithmetic progression with a common factor of
(MST - Di). Hence the total access delay for m messages is:

"-'' "m (m + 1) (MST - Di.
Access Delay for m messages = U N

2

.16 (3.10)

,..#'., -. -. - ,,.,, '-, . , ,. ,.',,,",, . .- ,., '...- ,. . -. ,. .,.. . . . .. . . . . . . . . . . . . . .... . . .-.-. ..-.. .-.. . . . . . . . . . . . ,.. -
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When a message is present on the ring it travels an average
distance of N/2 and the time taken by the destination host to absorb
the message is (Si - 2). Hence,

(M + 1) (MST -D )

MD. (theoretical)= i N + (S. - 2)1 (3.11) 71
'(MST > Di) 2"-2\ A

Equation (3.11) is only valid for MST > D.. If MST < D then -
the access delays remain constant, on average, it MST/2. Hene we
have:

MD (theoretical) + + (Si - 2 ..... (3.12)
1 (MST < Di) I

3.3 PERFORMANCE CURVES

In order to compare the performance of different token passing
ring configurations it is necessary to define a set of standard

., performance curves. The performance curves are chosen to highlight
the major operational characteristics of the ring. Three such curves
have been identified:

(a) Throughput carried by the ring (Rc) versus the
throughput demand from the ring (RD).

Curves may be produced using the three methods
chosen to measure the throughput carried by a node,
TC.. TC. can be calculated easily from method 1;
hoiever, the method assumes that the ring saturation
time is deterministic at any message demand rate.
The second method is independent of the ring
saturation time, but is dependent on the snapshot
time Ts. The third method is also dependent on
the snapshot time, but overcomes the possible
synchronisation effects introduced by the second :,& .
method.

(b) Total message delay (MD) versus the throughput
demanded from the ring (RD).

(c) Ring saturation time (Tsat) versus the throughput
demanded from the ring (RD).

This curve indicates how fast a ring will saturate
as the throughput demanded is increased. It is
possible to obtain this curve from the theoretical
model, as RD is the "ring utilisation factor" and ...

an approximation for Tsat can be obtained from
equations (2.6, 2.7, 2.8):

a Q-Tsat - ..... (3.13)
D MST

3.4 PERFORMANCE VARIABLES

The performance analysis of token passing rings can be
achieved by a study of the following three ring categories:

17
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(a) An N node ring with only one node active.

(b) An N node ring with all nodes active; where each
node has an identical workload and operational
characteristics.

(c) An N node ring with all nodes active and N-1 nodes
inactive; where each active node has a different
workload and operational characteristics.

In each of the three ring cateogories there are a number of
variable parameters.:

(i) The number of nodes in the ring: N

(ii) The average message length transmitted by a
node (s): S

(iii) The length of the output queue for a node (s): Q

(iv) The snapshot time (where appropriate): Ts.

The ring performance experiments will consist of varying the
value of one of the above parameters, whilst maintaining the others
at a constant value.

3.4.1 N node ring - one node active

This is conceptually the simplest ring structure. The mean
scan time for the token is:

MST = S. + N ..... (3.14)

The ring utilisation factor is given by:

S.i + N
R = -loll,. (3.15)

Note that R < 1 for a stable ring with output queue length, Q.

The parameters of interest are N, S, Q and Ts (in the case
of Q

3.4.2 N node ring - all nodes active

In this case all nodes are identical, hence the ring utilis-
ation factor is given by

R = N (S + 1) ..... (3.16)

The mean scan time may be computed by substituting D = MST
at R = 1, hence:

MST = N (S + 1) ..... (3.17)

The parameters of interest are S, W, Ts. The value of N is
fixed.

''"'18. 5 ."8
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3.4.3 N node ring -some nodes activej

The performance of this type of ring configuration may be
assessed by concentrating on one active node only. However, the
first two ring categories provide a more accurate representation
of the performance of a ring under worst case conditions. Therefore,

the performance study has concentrated on an analysis of the first
two ring categories.
3.5 PERFORMANCE MEASUREMENTS

Performance measurements have been performed on an N node ring
with one node active and all nodes active. In all the measurements

each node transmits as messages at a constant sending rate. C

3.5.1 N node ring - one node active

The effects of varying the size of the ring (N), the message
length of the active node (S) and the output queue length (Q) have
been studied.

(a) The effect of ring size: N

The first experiment indicates the effect of varying
N, whilst maintaining a fixed message length and a
fixed (low) queue length. Figure 3.1 indicates that
as N increases so the stability point of the ring
decreases; that is, the throughput carried for the ring

C"-..decreases due to the overhead of relaying the token.
When the ring saturates the throughput carried decreases
due to the limited output queue length. For the
purposes of the simulation an active node becomes
inactive when its output queue overflows. The ring
saturation times for demanded throughputs are given in
Figure 3.2. The curves indicate the length of time a
ring can achieve an "overload" demand rate before
saturation occurs.*

By increasing the size of the output queue length, such
that the ring does not saturate the curves of Figures
3.3 and 3.4 are obtained, using method 2 and method 3
to determine the throughput carried by the ring,
respectively. The snapshot time for each of the
experiments was 8 mns (Ts). There appears to be little
difference in the results produced by the two methods
of measuring the throughput carried by the ring, with
the exception that method 3 produces a more realistic
result due to an averaging effect. The curves indicate

4 . that the throughput saturates and remains constant for
'-IR >1, which is as expected from the theory.

The effect of total message delay in the ring is

indicated in Figure 3.5. The curves illustrate that
the message delays increase dramatically as the ring
operation enters the saturation region, as predicted
by the theory (equation 3.11).

(b) The effect of message length: S

A similar set of curves have been produced to assess

the effect of varying S, whilst maintaining a fixed

19
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number of nodes in the ring (N) and a fixed (low) ,'

queue length. The corresponding sets of curves are
given in Figures 3.6-3.9. It can be seen that as the
message length increases, the stability point of the-
ring increases; that is, the throughput carried by
the ring increases. The stability point of the ring
is, theoretically, at:

RD =

The performance curves indicate agreement with the
theory. 

6L

(c) The effect of output queue length: Q

The effect of varying the queue length whilst
maintaining a fixed number of nodes in the ring (N)
and a fixed message size (S) is indicated in
Figures 3.10 and 3.11. The variation in queue
length has no effect on the stability point of the
ring - all configurations will saturate at the same
demanded throughput. However, the ring saturation
times are dependent on the queue length, as shown
in Figure 3.11.

3.5.2 N node ring - all nodes active.f

In this study the value of N is fixed, at N 5. The effects
of varying the message lengths (S) and the output queue length (Q)
have been studied. Note that the characteristics of all the nodes
are identical.

(a) Effect of message length: S

This set of experiments assesses the effect of varying -

the message length (S) for five active nodes with a
fixed queue length (Q). The set of performance curves
are given in Figures 3.12-3.15. The curves indicate
that as S increases so the ring stability point increases;
that is, the throughput carried by the ring increases.
The stability point of the ring is, theoretically, at:

RD = NS - S as NIST =(S + 1) at R 1
S T -- =1

(b) Effect of output queue length: Q

3 The effect of varying the queue length at each node (by
the same amount) for five active nodes with a fixed

lop ~message length (S) is indicated in Figures 3.16 and 3.17. A
Again the variation in queue length has no effect on
the stability point of the ring -all configurations
will saturate at the same demanded throughput. However,
the ring survivability time in the saturation region
depends on the queue length as indicated in Figure 3.17.
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3.6 CONCLUSIONS

A set of metrics have been defined for analysing the perform-
ance of a ring interconnection structure. Also, a set of standard
performance curves have been defined for assessing the character-
istics of ring structures under varying workload conditions. The
dependent ring variables have been identified and a set of experiments

* have been perfornsed to characterise the features of a token passing
ring structure. The results indicate that the token passing ring is
relatively insensitive to variations in workload, possesses short
message delays under a light load and controlled message delays under
a heavy load.

The experiments have been conducted with each active node having
a constant message sending rate. In order to investigate more
realistic workloads, and to overcome any ring synchronisation effects,
a similar set of experiments will be performed with each active node
having a Poisson distributed message sending rate with the same
average mean as in the constant message sending rate mode. The 'v
theoretical model is also applicable to this type of ring operation.

- 6
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4. IMPLEMENTATION OF CHILL SIGNALS COMMUNICATION

PRIMITIVES ON A DISTRIBUTED SYSTEM

4.1 INTRODUCTION

Reductions in the size and cost of computing power in recent
years have encouraged the use of distributed processing for the
control of real time systems. This approach offers the advantages
of fault tolerance, since processing may be transferred from one
element to another, and extensibility, as processing power may be
added incrementally. A likely application area for such systems is
in telephone exchanges. The typical architecture of a distributed
system for real time control is shown in Figure 4.1. A set of
processing elements (processor and memory) form the 'nodes" and are
interconnected by means of soine medium often using a ring or bus
topology .

* ~The software for distributed sysetms usually takes the form of .-

a number of concurrently executing processes or tasks. These may be
allocated statically or dynamically to nodes and there may be one or
more processes executing on each node. It is likely that such systems
will be programmed in a high level language having in-built primitives
for handling the creation of processes and communication between them.
One such language is CHILL, designed by the CCITT for programming
of telephone switching systems. CHILL provides four distinct methods
of inter-process communication, one of which, called "signals", is
particularly suitable for distribute.- -'stems as it allows data to
be sent directly between processes without using explicitly shared
buffers.

This -ection details the results of a study of the implementation
considerations for "signals", carried out at UMIST. The principal
objective was to examine the problems of implementing "signals" on
various distributed architectures. Of particular interest were the
issues of partitioning of the system data structures around the nodes,
the algorithms used in implementing the primitives and the demands
made on the underlying interconnection structures.

The investigation was carried out by "modelling" of the CHILL
signals primitives on a multi-microprocessor, CYBA-M. This approach
gave the opportunity of studying both an implementation for the CYBA-M :,
architecture itself, which is based on a shared memory, and also the
modelling of other architectures.

4.2 THE CHILL SIGNALS PRIMITIVES

CHILL signals are an interprocess communication system of the
message passing class. Two primitives are available called "SEND"
and "RECEIVE CASE". The SEND primitive is of the simple "send and
forget" type - i.e. a signal (the CHILL name for message) is
despatched and the sending process then proceeds regardless. The
signal remains in the system until it is received by some process
instance executing a RECEIVE CASE primitive. A signal has a name
which is used for selection of signals in RECEIVE CASE, and may
also have an associated data list. The destination process instance
may indicate explicitly ("specific destination" node) or, it unspec-
ified, the signal is available for reception by any one process
instance executing a suitable RECEIVE CASE ("open destination" node).

%W An optional priority may also be assigned to a signal in SEND. All
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signals must be declared like variables before they are used. The
declaration may also place a restriction on the possible destination
process of a given signalname.

The RECEIVE CASE primitive specifies a set of signalnames
that the executing process is interested in receiving. With each
set of these may be associated a location for any received data and
an action to be performed if that particular signalname is received.
An optional "ELSE" clause allows a default action to be carried out
in the event that none of the signalnames quoted are present.
Otherwise, the instance becomes "delayed" un';il one of the specified
signals arrives. If more than one of the listed signals is available,
the one with the highest priority is taken. For further details,
the reader is referred to the CHILL specification (15) (16).

4.3 IMPLEMENTATION REQUIREMENTS

An examination of the CHILL specification reveals certain
special implementation requirements which must be set by the model.
Despite avoidance of explicitly shared buffers in "signals", any
implementation of CHILL signals in practice requires some behind-the-
scenes buffering of signals and the maintenance of other special
information to operate as described in the specification. Signals

- .- produced by SEND but not consumed by RECEIVE CASE must be retained
somewhere by the system until they are received. The requirements
for "open" and "specific" destination signals in this respect are
different, as the latter must remain in a common pool for reception
by any instance. When a SEND takes place, the status of the
destination process - delayed or not - needs to be known, in order
that the signal may be delivered immediately or placed in a buffer
as appropriate.

From the above considerations, three dynamic data structures
were proposed:

(1) Assigned Signal Table; contains signals sent to a
specific destination instance, but not yet received.
For each one, the destination, signalname, priority,
data and instance number of the sender must be stored.

(2) Pending Signal Table; as above, but contains signals
sent to open destination.

(3) Delayed Instances Table; contains entries for each
process number which is delayed as a result of an
unsuccessful RECEIVE CASE. For each one, a list of

-- the signalnames waited for is stored.

In addition to these, two further data structures are needed
which, in a simple implementation involving no process creation or
destruction, could be static:

(1) Process Name Table; shows the mapping of instance
numbers to process names. 2

(2) Signal Definition Table; for each signalname, lists
the permitted process names of its destination if
restric ted.
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Without reference to any specific implementation, the
algorithms necessary to implement the CHILL primitives can be
expressed in terms of operations on the above data structures.
Figure 4.2 is a pseudo-code algorithm showing the main actions
necessary for a SEND. Table accesses are indicated by means of
the procedures "add" and "remove", which add or remove an instance
number or signalname to or from a specified table. The function
"search" looks for a signalname in a specified table, returning
true if successful. The function "delayed" returns true if the
specified instance number is delayed for a given signalname.

First, the parameters of the SEND primitive are checked for
possible exception conditions. For example, any conflict between
the destination instance and the permitted destination process
quoted in the signal definition table is caught. If such a problem
is found, the exception handler is called. Otherwise, the algorithm
proceeds according to the type of signal - specific or open
destination.

If the destination is specific, the Delayed Table is checked
to see if the destination instance is delayed. If so, and it wants
the signalname in question, the Delayed Table entry is removed
(i.e. the status changed to "RUNNING"), the destination instance
is reactivated and the signal delivered. If the destination instance
was not delayed, the signal is placed in the Assigned Table.

For an open destination signal, the procedure is similar, but
this time the delayed table must be searched to find any instance
which is delayed for the signal. If a suitable instance is found,
the table is updated and the destination instance reactivated as
above. If no suitable delayed instance exists, the signal is placed

* in the Pending Table.

Figure 4.3 illustrates the algorithm for RECEIVE CASE. A
receiving process begins by searching the Assigned Table for the
signalnames listed in the RECEIVE CASE construct. If a matching
entry is found, the signal is removed from the table and the
receive terminates. If the search is unsuccessful, the Pending
Table is similarly searched. Note that by this ordering, ASSIGNED
signals are given priority over PENDING signals. This is logical

- . since the latter can be dealt with by another instance. Within
each search, the highest priority suitable signal is taken where
a choice exists. If the second search also fails, then the
algorithm checks for the presence of an ELSE clause. If present,
the action specified after "ELSE" is carried out. With no "ELSE",
the flag for the receiving instance in the Delayed Table is set
(i.e. the status changed to "DELAYED") and the instance sleeps
until awoken by a suitable sender. When this happens, a signal is
received and the action specified for the matching signalname is
executed.

If all the processes were allowed to access the three tables 7t7
concurrently, inconsistencies would arise. For example, two senders. -

may pick the same destination instance from the delayed table and
both attempt a reactivation operation, or two receivers may both
try to take the same signal from the Assigned or Pending tables.
Thus any practical implementation must in some way restrict accesses
to provide mutual exclusion for key operations on the database.

I JI
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PROCEDURE SENDSIGNAL( Signal );
BEGIN

IF Signal,destination = SPEICIFIC THEN
IF processname( Signal,destination ) EXISTS

AND (processname( Signal,destination ) =
pnamerestriction( Signal,name )

OR pnamerestriction( Signal,name ) = NONE) THEN
LOCK Tables;
IF delayed( Signal,destination for Signal,name ) THEN

removed( Signal,destination from Dtable );
UNLOCK Tables ;

reactivate( Signal,destination with Signal,name );
ELSE

IF full( Atable ) THEN
exception( OVERFLOW )

,-: ELSE
FI add( Signal to Atable );

UNLOCK Tables;
FI

ELSE exception( MODEFAIL );
FI

ELSE (open destination)
* LOCK Tables;

Found := FALSE:
FOR Instance := Firstinst to Lastinst WHILE NOT Found DO

IF delayed( Instance for Signal,name ) AND
(processname( Instance ) = pnamerestriction( Signal,name

"- - -.. OR pnamerestriction( Signal,name ) = MORE ) THEN
" Found := TRUE;

FI
OD
IF Found THEN

remove( Instance from Dtable );
UNLOCK Tables;
reactivate( Instance with signal );

ELSE
IF full( Ptable ) THEN exception( OVERFLOW );
ELSE add( Signal to Ptable );
FI
UNLOCK Tables;

FI
FI

END

Figure 4.2. Algorithm for the SEND Signal Operation
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PROCEDURE RECEIVECASE( Signalnamelist, Actionlist );
BEGIN

LOCK Tables;
Found := FALSE;
FOR Signal,name IN Signalnamelist WHILE NOT Found DO

IF search( Atable for Signal,name ) THEN Found TRUE; FI
OD"foA
IF Found THEN~remove( Signal from Arable);""

UNLOCK Tables;
call( address in Actionlist for Signal,name );

ELSE
Found := FALSE;
FOR Signal,name IN Signalnamelist WHILE NOT Found DO
-D-IF search( Ptable for Signalname ) THEN Found TRUE; FI

IF Found THEN
remove( Signal from Ptable );L
UNLOCK Tables;
call( address in Actionlist for Signal,name );

ELSE
IF Else IN Actionlist THEN

UNLOCK Tables;
call( address in Actionlist for Else );

ELSE
add( This instance, Signalnamelist to Dtable );
UNLOCK Tables;
Signalname : sleep( until reactivated );
call( address in Actionlist for Signalname );

FF
FI

END

Figure 4.3. Algorithm for the RECEIVE CASE Operation

4
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4.4 MODELLING OF THE CHILL SIGNALS PRIMITIVES

A multi-microprocessor, CYBA-M (l7),was used to test various
possible implementation strategies for the algorithms discussed
above (18). Performance measures were devised and exercised on each
of four "models". The first three of these all assume the existence
of shared memory - in fact they use the native architecture of the
CYBA-M multiprocessor, Direct Shared Memory (DSM). These variants
of the DSM implementation differ in the schemes used for mutual
exclusion over accesses of the datastructures:

(1) The first implementation used the simplest possible
strategy. When any process instance requires access
to datastructures, they are locked as a whole using
a single binary semaphore. Thus only one process
instance can access the tables at any time, as shown
in Figure 4.4(a). The algorithms of Figures 4.2 and
4.3 were shown with this locking protocol - the
operations LOCK and UNLOCK convey waiting for the
semaphore (P) and releasing it (V) respectively.
Naturally, this scheme is very restrictive, and leads
to processes spending most of their time waiting on
locks for access to the datastructures.

(2) For the case of specific destination signals; the
Assigned and Delayed tables can be divided by
destination instance number, and each section given
its own separate lock. Unfortunately, the Pending
table cannot be similarly divided, since it contains
signals for potential reception by any process instance.

4. In this first variant of the simple model, multiple
locks are used for the Assigned and Delayed Tables
as shown in Figure 4.4(b). A set of locks (one
per instance) covers both of these tables for
protection during concurrent receive or send and
receive operations. Another lock set covering only
the Delayed table provides mutual exclusion between
senders checking the status of potential receivers.
The Pending table is given a single separate lock.

(3) In a system with shared memory, contention for the
Pending table can be reduced by allowing multiple
readers or one writer to access this datastructure,
as shown in Figure 4.4(c). This means that any number
of receiving instances may carry out searches of the
Pending table at the same time, though a sender or
receiver updating an entry must obtain exclusive access.
Since table searching is the most time-consuming
operation in the SEND and RECEIVE CASE algorithms,
this approach significantly increases parallelism.
A second implementation variant -was produced using
this scheme. The locking arrangements for the Assigned
and Delayed tables remain as in (2).

The above implementations all rely on shared memory for their
operation. In a typical distributed system the nodes will not
have any common address space, however, so the consequences of
implementing the CHILL primitives *.i-hout this convenience were
investigated. :he arrangement cif 12) above maps readily onto a
non-shared memory system, wi-h each Assigned and Pending table
segment placed in the local memories of the noci s. The principal
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p. trouble area is the open destination signal type. Without shared
memory, the method of (3) for Pending table access cannot be used.
Instead, this table must be distributed around the nodes. Assuming
that a purely symmetrical solution is required (i.e. no specialIcentralised distributed node), there are two main approaches to this:

(a) Replication of the Pending table at all nodes, each
*open-destination signal sent out being replaced in all

of the copies. A scheme for ensuring consistency of
the copies would be necessary (as in a distributed data-
base), which is a non-trivial problem.

(b) Each node could retain all open destination signals -

which it sends out in a local buffer, which would be
polled by all other nodes executing a RECEIVE CASE.

Both of the above are rather unattractive and would be difficult to
s implement efficiently.

L
A model was produced to test an implementation without shared

memory for specific destination signals only. Each node was
*represented by two CYBA-M processors as shown in Figure 4.5, one

acting as a "Host" processor and the other a "communications"
processor. The host processor is responsible for the execution of
applications programs and RECEIVE CASE operations. When a SEND
takes place, it will transfer the parameters of a signal across the
network to the communications processor at the destinations node, ... '.

* which buffers up the signals in a local Assigned table for its
-' associated host. ihnec oe the two processors are assumed

to share address space, and a single lock provides mutual exclusion
between them.

4.5 RESULTS

4.5.1 Throughput Characteristics

The four models were compared using a "benchmark" workload
* program, which simulated the arrival of send-requests at a chosen

average rate. The inter send-request delays had a Poisson distrib-
ution about the nominal desired value. The mean send-request rate
gives a figure for the throughput demanded or offered to the system.
The actual rate at which SEND primitives were executed was also
measured, yielding the throughput carried. The latter was recorded
for a range of values of throughput demanded, resulting in the
characteristics shown in Figure 4.6.

Curve A represents the performance of the "single lock"
implementation (1), using the six process instances, grouped as
three sender-receiver pairs. The behaviour for open and specific
destination signals in this case is identical. Note that the

*implementation fails before reaching saturation - this is due to
2 overflow of the system tables. The contention for the datastructures

is so severe that receivers cannot gain access sufficiently quickly
to empty them.

.47

Curve B is the throughput characteristic for specific
destination signals using the multi-lock model (2). The performance

is greatly improved compared with (1). Table overflow no longer i
occurs and a saturation throughput of 93 signals per second is
achieved, which is about six times the maximum obtained using the
single lock. Saturation is simply occurring when the average

* inter-send delay becomes less than the time taken to execute the
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SEND operation itself - there is no build-up of signals in the
tables.

Using open destination signals (curve C), however, model 2
presents no improvement, as expected since the Pending table still
has only one lock. In fact, overflow occurs at a slightly lower
throughput for (2), probably due to the extra overheads involved
in checking the Assigned table where multiple locks now have to be
obtained (for no advantage since it will be empty when all signals
are open destination).

Curve D shows the performance of the multi-lock multi-reader
model, (2) with open destination signals. It can be seen that I
overflow no longer occurs, though the saturation throughput is still
inferior to the specific destination case. (The performance for
specific destination signals is the same as that for model (2) -

curve B. To summarise, both variants of the original model remove
the constraints on performance for specific destination signals,
but the saturation throughput attainable with an all-open destination
workload is limited.

The non-shared memory model has extra overheads compared with
the above three, due to the need to transmit each word of a message
over the simulated network. However, the use of two processors per
node allows some extra parallelism to be exploited, reducing the
processing required on the host processor during a SEND. If the
delays in the network are assumed to be negligible, the overall
result is a performance very similar to Figure 4.6 Curve B, with a
slightly lower saturation throughput of 80 signals per second. In
practice, this would of course be degraded by the delays in a real
network.

4.5.2 Effect of Signal Priority

." - The transmission delay suffered by signals in the models was
' also measured. This is the delay from the time of a send-request

to the time the corresponding signal is received. An average figure
was recorded over the range of "throughput demanded" for each of
the four priority levels implemented in the models. The priority
levels are numbered from 0 (lowest) to 3 (highest). A typical
result is shown in Figure 4.7. As expected, the transmission delay
at any particular throughput level is smaller the higher the priority.
Also, the differences between those delays increase with throughput
carried. More significantly, however, the delay rises more rapidly
for low priority signals than high ones, a pattern which gives cause
for concern. It arises because when there is a build-up of signals

Wr in a table, the probability of a signal being chosen by a receiver
falls rapidly with decreasing priority. It was also noticed, when
the models were running certain workloads, that it was possible for
some low priority signals to remain in tables indefinitely. New,
higher priority signals were arriving between each RECEIVE and these
were taken in reference to the low priority ones. If this pattern
is maintained, the latter may never be received.

4.6 CONCLUSION.

This study allows some comments to be made on the CHILL
communications primitives themselves; their usefulness, problem areas

-~.and the constraints they impose on system desi ,n.
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The send-and-forget nature of CHILL signals requires maintenance
of buffers or tables somewhere in the system and the accessing of
these, sometimes, by more than one process instance. The models
show clearly that performance is heavily dependent on contention for
those shared data structures. Contention itself may be influenced by
the policies adopted for mutual exclusion between processes during
key operations. Relatively minor changes to the locking protocols
used were seen to produce dramatic effects on contention levels and
hence on system performance.

It appears that the CHILL "open destination" signals pose a
severe implementation difficulty. Whilst the solution of model (3)
for shared memory gives acceptable results, it cannot be used for
non-shared memory architectures and so any implementation for the latter
is likely to be inefficient and is perhaps best avoided:

The buffering required for CHILL signals also causes problems.
Potentially large numbers of signals must be stored somewhere in the
system and, since such storage is likely to be finite in size,
overflow can occur. Also, a sender has no assurance of the delivery
of any signal sent, since it may remain in the tables for an unpredict-
able period.

To prevent overflow, some kind of flow control would be
desirable. A possible way to provide this is to arrange that a
"sender" is held up of the table to which it is attempting to add
a signal is full. Sending would be allowed to continue when a
vacancy in the data structure appeared. However, this would mean
that the SEND operation was no longer always a fast non-wait operation.
To increase the security of the signals mechanism, acknowledgements
could be used. These could be user provided, by means of explicit
SEND operations used to acknowledge a successful RECEIVE, or could

v perhaps be provided automatically.

Finally, the priority scheme for signals does not appear to be
very successful. Since there is no guarantee of delivery time for
any signal, the low priority ones may in practice remain in tables -.
indefinitely, incurring long transmission delays. To avoid this
problem, it is suggested that only two priority levels be available.
These would be defined as "normal" and "emergency", with the latter
used very sparingly. In this way, there would be little chance of
the normal priority signals suffering excessive delays, yet there
would be a faster delivery available to the occasional emergency
signal.

The above considerations cast grave doubts over the whole
-. CHILL signals scheme. The impression is of an insecure communications

method with large overheads. It is suggested that a message system
based on "send-wait" and "receive-reply" primitives, where the
sender waits for a reply before continuing, would be better from
both a security and implementation viewpoint. Using send-wait, the
number of buffered messages is automatically limited to one, so all
problems of large buffers and flow control immediately case to exist.

V. It is worth noting that the primitives of Ada, for example, correspond
better to the send-wait approach, despite their "procedural" present-
ation (19). The same philosophy appears in the recently introduced
Occam language (20).

-* .
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5. MICROPROGRAM DEVELOPMENT ENVIRONMENT

5.1 INTRODUCTION

The design of a microprogrammable node for CYBA-M has been one
of the objectives of this research project. In order to achieve this
end a microprogram development system has been specified and designed

*.[ to enable the development of a microprogrammed processing element.

5.2 MICROPROGRAM DEVELOPMENT SYSTEM

The major units of the system are indicated in Figure 5.1. .1*
The function of each unit has been specified and printed circuit boards
have been designed and manufactured (21).

Work has been held up on this project due to the move of
Professor E L Dagless to the University of Bristol and difficulty in
recruiting staff to complete the project. However, work recommenced
in July 1983 when two vacation students were recruited to complete
the physical assembly of the development system working under the
direction of Dr M Bolton. The following tasks were completed:

(a) Mechanical Assembly

The development system card frame and backplanes were
installed. The PCB connectors were mounted and two bus
termination circuit boards were designed and manufactured.
Power supplies and fan were installed.

(b) Workstation Controller

As initially conceived, the development system would
be attached to a PDP-11 host via a DR11-C parallel
interface. The present arrangement uses a 68000 single
board computer, as the workstation controller, and a
VAX 11/750 as the program design system. The VAX runs
the microprogram cross assembler and the 68000 the
debugger control software.

The 68000 on-board monitor permits the user to
communicate with the VAX in a transparent mode.

(c) System Interfaces

The development system interface card had been designed
to expect a DR11-C interface. This interface was
modified to connect to the 68000 workstation controller.
Software was written for the 68000 to permit a user to
send and receive data to and from the development
system.

(d) Microprogram Assembler
In November 1983, a research student commenced working

on the project. To date he has successfully transported
the assembler from a PDP-11 to the VAX, and is currently
writing the debugging software for the 68000 (in C),
together with assembling and testing the remaining cards
for the development system.
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5.3 CONCLUSIONS

The construction of the microprogram development system has
been delayed for the previously stated reasons. However, it is
expected to have a viable development system in the summer of 1984
when research will commence on the design of a microprogrammable
mode for CYBA-M.
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6. RELATED WORK

In addition to the major aspects of the research program, a
related project has been undertaken, by an MSc student, to design
and implement an 8086 node to replace one of the current 8080 nodes
in CYBA-M.

6.1 DESIGN OF AN 8086 NODE FOR CYBA-M

As part of the overall research project the design and implement-
ation of an 8086 microprocessor node for CYBA-M was undertaken by an

MSc research student, G. Rubner (22). The objective was to assess the
mechanisms to be employed when upgrading an existing 8080 micro-
processor node and to assess the performance of the new node in a

, heterogeneous processing element environment.

A block diagram of the 8086 node connection scheme is given
in Figure 6.1. A standard node interface card (NIC) is provided
within CYBA-M for permitting external devices to replace an 8080
node. The NIC presents a standard interface to the external device
and also conforms to the access protocols for the local, global and

- . image memories. It was decided to employ the NIC to connect the
8086 to CYBA-M, as the student did not have enough time to design
a special purpose interface. The 8086 microprocessor was incorporated

.t in an SDK86 single board processor system. An Intel MDS was used to
download ASM86 programs into the SDK86 and CYBA-M. The major part

-~~.of the design effort was expended in the design and implementation of
the interface to connect the NIC to the SDK86 (N861).

A block diagram of the SDK86 and the N861 is given in Figure 6.2.
It was decided to map the total address space of CYBA-M (512K bytes)
directly onto the address space of the SDK86 (1024K bytes), so that
the 8086 system does not have to discriminate between its on-board
memory and the CYBA-M memory space. One problem, which was overcome,
was the mapping of the 16-bit word length of the 8086 onto the 8-bit
word length of CYBA-M. The 8086 can perform byte and word accesses,
which meant that the N861 had to perform one or two CYBA-M accesses
respectively.

The performance of the system was not as good as expected. A

byte access to a CYBA-M memory location was, on average, 2.9 micro-
seconds and a word access 4.9 microseconds (with a 5 mHz 8086 clock).
The bottleneck in the system was the NIC, which added an overhead
of 1.5 microseconds to each byte access in CYBA-M. However, a special
purpose node interface within CYBA-M would remove this overhead time.
The overhead was caused by synchronising the operation of two
asynchronous state machines, one in the NIC and the other in the
N861.

The feasibility of connecting a different microprocessor node
to CYBA-M has been demonstrated and experience has been gained in
overcoming the problems inherent in interfacing a new microprocessor
to an existing multi-microprocessor system.
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7. CONCLUSIONS

Multi Processing-element Systems are clearly complex not only
in the nature of the interconnection structure but also the complexity
of the application to be placed upon them. Whereas concurrency can
be simulated on a uniprocessor, it is appreciated that the true
concurrency of a Multi Processing-element System is the only way to
obtain the correct feel of such a system. Observation of the
operation of the direct shared memory system makes it possible to -

identify the features which are of particular importance. The
modelling of the token passing ring highlighted the particular
performance parameters which the designer needs to take account of
in the implementation of such systems. The experiments on the Multi
Processing-element Systems led to the development of the theoret-
ical model which now makes it possible to analyse the performancp of
the system and to suggest ways in which they may be simulated on a
uniprocessor. Experiments on the Multi Processing-element Systems
were difficult to conduct. In the early days when simple models were
being built and experimented upon,it was quite sufficient to use the
assembly code of the microprocessors. However, as it became necessary
to extend the scope of the experiment and it was felt desirable to
provide an interactive interface for the experiment, then the limit-
ations of assembly code became important. The unidirection ring
simulation model described in Appendix A is probably the ultimate
which one would attempt to build upon such a system. In future, one
would only contemplate modelling complex systems on a multiprocessor
if the individual processing elements themselves were better able to
support a high level language which in turn would enable the design
of the complex model required. Now that there is a better understand-
ing of the theoretical models of such interconnection structures and
of the performance criteria to be investigated, it is becoming easier
to conduct the simulation experiments on a uniprocessor system able
to support the appropriate high level language and to provide the
convenient experiment environment. It is recommended that future
investigation studies be carried out upon a high performance uni-
processor with a user-friendly environment rather than the development
of a multiprocessor system specifically for this purpose.

The direct shared memory system was used successfully to
investigate the implementation of the CHILL language. In particular,
the CHILL signals were treated in great detail. The limitations of
these signals have been clearly exposed and it is suggested that future
investigations on real ring systems which address particularly these
aspects of the CHILL language should be undertaken.

The use of a multiprocessor to simulate other multiprocessors
is not an easy way to proceed, though it may be the only way to
observe the true effects of concurrency.

52

_-4

.- *.-.,!

• ., %

N M ?P .z: zz :.%%:. .. t ; %. .¢bb:. " " . .. " '"



APPENDIX A

UNIDIRECTIONAL RING SIMULATION MODEL

ABSTRACT

Work on the modelling of multi-microprocessor interconnected
structures on a Direct Shared Memory (DSM) multi-microprocessor
system is being carried out in the Department of Computation, UMIST.
The objective of this work is to obtain performance measurements for
the modelled structures. Earlier results obtained from modelling a
simple ring structure enabled practical experience to be gained in
the modelling of such systems and also indicated the problems
associated with such modelling. Using this experience, it was
decided to write a more sophisticated simulator, so that the earlier
problems could be overcome, and more accurate results obtained.

INTRODUCTION

CYBA-M (23) (Figure A.1) is a Direct Shared Memory (DSM) multi-
microprocessor system, which has fifteen microprocessors available
*for use. These microprocessors (Pnro-14 in Figure A.1) are Intel
8080s and each has its own local memory (LMO-I4 in Figure A.1) of
32K bytes. This combination of an 8080 microprocessor and a local
memory is termed a processing element, and communication between
processing elements is accomplished using the Global Memory, which
has 16K bytes of storage. The various program modules are loaded
into the appropriate memories of the processing elements under
control of EMU (24), an operating system which runs on CYBA-ll*. The
system provides a suitable vehicle for modelling other microprocessor
interconnection structures, since the Global Memory can act as the
connection medium, in place of the cabling etc. of the systems under

y" study.

PREVIOUS WORK

A modelling system developed by Kille (25) enabled the Global
Memory of CYBA-M to act as a series of communications buffers between
processing elements on CYBA-M, in such a manner that these buffers
can represent interconnects between nodes for loop, complete and star
facilities felt to be necessary for detailed investigations and a
course of work was embarked upon by Ainscough to adapt these modules
so as to createa software local network modelling capability, with
sufficiently detailed monitoring capability that the system would
suit our requirements.

A simple ring structure is shown in Figure A.2, where each node
of the ring uses two processing elements on CYBA-M. The host
processor is reserved for user (applications) processes, and has a
simple interface to the comms (communication) processor, which
interfaces to other nodes in the ring. An experiment was performed
by Rivkin (26) using the modified version of Kille's system to
implement the ring of Figure A.2.

* CYBA-I is the name given to a PDP which is dedicated to CYBA-M.
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In this experiment, one source node sent messages to the next
(destination) node, so that only two ring nodes were used in the
simulation and this represented the simplest case of sending and
receiving a message. Many simulation runs were performed, such that
on each run the time between sending messages was altered, but was
set at a constant for any given run. The messages were monitored at
various points in the node, and in particular the times from when
messages were initiated until they were received by the destination,
and the times between subsequent messages being started (i.e. the
queueing times in the sending node) were monitored. In order to
avoid problems due to "starting up", on each run 1000 messages were
allowed to be sent and then the next 10 messages were monitored.
The mean values of the times monitored from these 10 messages were
used to obtain the results shown in Figure A.3.

The results were presented in a form proposed by Barton (Z.7).
Calls are made to the communication processor for messages to be sent,
each call lasting for time "e", after which a further time "a" is
spent in the application processor before the next call to the
communication processor is made. Plotting 1/Ca + c) versus 1/a
represents the number of messages per unit time (i.e. throughput
carried) versus throughput demanded (i.e. throughput carried when
C = D - the idealised system).

The performance of the idealised system is shown in Figure A.3
by a 45 degrees straight line. The modelled system tracks approx-
imately 37o below the ideal until the demanded throughput rate reaches
approximately 18,000 requests per second, when there is a dramatic
fall in the throughput carried to approximately 40% below the ideal.
As the demanded rate increases there is a violent oscillation in the
carried throughput due to synchronisation of the communication
processors. The oscillations abate and the carried throughput tracks
at approximately 40% below the ideal.

The angular plot which resulted from the experiment is not a
feature of Kille's model, however, but is due instead to the various
processes in the model synchronising and then de-synchronising as the
varying source arrival rate occasionally causes the processors to
cooperate well on the task of modelling, due to the various pieces
of code having path lengths which correspond in such a manner that
a form of "beating" takes place. This phenomenon was also encountered
by Barton, who then solved the problem by using a Poisson distribution
of the source arrival rate having a mean value equal to the desired ~
request rate. The effect of this was to randomise the request rate
and so break up any potential process synchronisation.

It was stated earlier that Kille's original set of modules had
been adapted for use in this particular application. Inevitably then,
since the modules had not originally been written with this applic-
ation in mind, it could not reasonably be expected that they would
exactly meet our requirements in total. However, adapting this
system did provide valuable experience , and helped to identify more
clearly our requirements for a simulator written specifically for
this application. One of the main problems encountered with Kille's
model was that timings from the system were obtained by using a code-
generated timing loop, which timed the various paths of code in the

K,>: model. This method, together with the fact that Kille moved messages
around in sixteen byte blocks examining buffers on a round-robin
basis, meant that the timings were not accurat enough for our
purposes.
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SIMULATION REQUIREMENTS

thet became apparent that what was required, in order to improve
Sthe accuracy of the timings obtained from simulation, was that the

simulations should be rigidly tied to an accurate simulation clock.
Initially, it was decided to allow a one-byte movement of data in
each clock period of the transmission, but eventually it is intended
that a single bit movement of data should occur in each simulation
clock period. Such rigid control of the movement of data with
regard to time would also prevent the synchronisation phenomenon of
Kille's model.

A further requirement was that the simulator should be designed
in such a way that it would be sufficiently well-structured and
flexible, so as to allow it to be easily modified to include future,
but as yet undecided, topologies and protocols. It was decided to
write the simulator in CYBA-Pascal, a version of Vrije Pascal which
had added communication primitives. Tx (transmit) and rx (receive),
which could be used in complementary pairs. These primitives allowed
for the transmission and reception of variables between concurrent
processes on physically different processors, ')y making use of the
global memory, and they also enabled these processes to be synchronised
by rendezvous, since the first instance of either tx or rx resulted
in the process in which that instance occurred being forced to wait
for a matching instance of the complementary primitive to occur in
another process.

It was decided that the first type of ring to be studied was a *

unidirectional token-passing ring, and that the transmission format
used should be HDLC. Once this ring had been studied, it was
intended that other ring protocols and data formats should be added
to the simulator to build up a comprehensive repertoire, so that a
variety of structures could be studied under various traffic
conditions.

In order to simulate the simple ring of Figure A.2, buffers
must be introduced into the model (Figure A.4(a)) to allow for the
transmission of data around the modelled structure. Access to these
buffers must be strictly controlled using the synchronisation
primitives, so that during one clock period, data progresses through
each node, from input buffer (phase (i)) through to the output buffer
(phase (iv)), and where necessary, undergoing movements through
phases (ii) and (iii). An individual node is shown in Figure A.4(b)
where the input/output buffers have shared ownership between
neighbouring communications nodes, such that the output buffer of
one node is the input buffer to the successor of that node.

In terms of the capabilities of the simulator on CYBA-M, this
means that it is possible to simulate rings of up to seven nodes, L%
since two PnVl are required for each node (for the host and comms)
making a total of 14 PnVs required for the nodes. One PnV is required
to connect to CYBA-ll, so that we have one spare PnV left over. This
spare PnV is used as the "monitor", and this is used to control the
simulation.

- .4,...
Since inter-processor communication is performed on CYBA-M

via the global memory, then the buffers above must also be implemented

A PnV is the number given to a virtual processor on CYBA-M, and
this ,irtual processor maps on to a real processor (Pnr).

4
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in global memory. Therefore, in order to create space in global
memory, it is only necessary to define a pointer to a data item and
then "new" the item onto the heap. In order to model the ring, then,
it was necessary to define a global datastructure.

DEFINING A DATASTRUCTURE

In addition to controlling the simulation, the monitor PnV is
also responsible for building the simulator data structure in global
memory. The monitor interactively determines how many nodes
(minimum 2, maximum 7) are to be simulated, and then builds the data
structure shown in Figure A.5(a), creating a set of records for each
host/comms pair. The ring buffers for comms to comms data trans-
mission are also established at this time. The record structure for
a host/comms pair is shown in detail in Figure A.5(b). It can be

a ~. seen that the structure contains information pertinent to that node
pair in particular, but it also establishes the position of the pair
in the ring, such that whereabouts of the next neighbour pair is
known, so that by using the next neighbour pointers, the ring is . .
completed.

INITIALISING THE DATA STRUCTURE

After building the data structure, the monitor then interactively
determines which nodes are sending messages, and the destinations of
these messages, together with the message sizes in bytes, and the
number of messages to be sent. This information is loaded into the
data structure to initialise it. The buffers used for the transmission
of data are initialised with "flag" bytes to signify that they are
not yet carrying message data, and the input buffer to the node "-
containing host 0 is loaded with the "token" byte. During the course
of the simulation, monitoring information concerning the state of a
node with regard to message passing and fault conditions, is main-
tained, as is information concerning the sending rate, and number of
messages still remaining to be sent from that node. The process in

, -. the host of a node is deemed to be active if the send-mode record
indicates that the host still has messages which are required to be
sent. However, any mode, even with a process which is not active, is
capable of receiving messages.

DISTRIBUTION OF THE DATA STRUCTURE

When the data structure has been initialised, the monitor usesthe tx primitive to transmit pointers to the PnVs of each host/comms
pair, so that the host and comms processes can access their own
particular part of the data structure, as shown in Figure A.6. Thus
a node pair may read and write to its own message buffers, and also

a. to the ring input and output buffers to which it is immediately
connected. It can also update the send-mode and monitoring-information
records. Since the monitor process has knowledge of the whole data
structure, then it is able to have access to the whole structure.

MESSAGE DATA PATHS BETWEEN HOST AND COMMS

Queues are used in the local memories of the comms nodes to
decouple the host and comms processes during the sending and receiving
of messages. Thus, as shown in Figure A.7, the host writes a message
to the host send buffer, and the host process is then free to continue.
The comms process, upon detecting that the host send buffer is full,
unloads this buffer into the back of the output queue, and frees the
buffer. Eventually, this message reaches the front of the queue
and is then formatted in HDLC format and loaded into the output buffer.
The output buffer is then unloaded, a byte at a time in each simulation
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clock period, into the ring output buffer. In the absence of any
message for transmission, flag bytes are placed in the ring output
buffer in each clock period.

Reception of a message is similar, in that message bytes are
taken frmthe ring input buffer of the dsiaonnode during each

then, after being de-formatted, are loaded into the end of the input
queue. The message at the top of the input queue is then written
into the host receive buffer. Upon detecting this buffer full, the
host process removes the message and frees the buffer. If a node,
at a given point in time, is neither sending nor receiving data, then
it bypasses any data arriving at its node until such time as a
message arrives having that node as the destination or the host in

the node wishes to send a message. However, even though a node may
wish to send a message, it cannot do so until that node receives the]
token. The token is always circulated at the end of a message or
group of messages, so that a node must first absorb or bypass any
messages arriving, in order to obtain the token and so gain the
required permisssion to send a message. After transmitting its message,
the node then regenerates the token so that it can be passed on to
izs next neighbour.

CAPABILITIES OF THE SIMULATOR

The simulator can send messages from any node to any other
destination node, and these messages may be sent at a constant rate,
or at a Poisson rate about a given mean rate. Also, the length of
the message in bytes can be varied up to a maximum of 256 bytes and
can be different in each node, as can the sending rates.

It is also possible to measure the performance of a particular
target system. If it is known that the host processors of the target

* .~ system have an average instruction time of say, x piseconds, then a
Poisson distribution of instruction wait times with a mean value of

* x is loaded into global memory. These times are then scaled so that
V they are in terms of simulation clock units, so that, for example, if

the target ring speed were to be, say, 10 mbit/sec, then a one-byte
movement would take 800 p.seconds of real time, so that the simulation
byte clock would achieve a one-byte movement of data which would have
taken 80 4~seconds in real time. Thus, if the target processor speedV
were, say, an average instruction time of 4 ipseconds then the

* instruction wait times would have to be multiplied by 5, so that they
would then be in clock units, such that 5 clocks =4 i iseconds of real
time. When the simulator is eventually modified to have a bit clock,
that basic clock unit will then be 100 p.seconds so that scaling
will be simplified. At each clock the current instruction wait time
is decremented by 1 until it is zero, at which point a target
instruction is said to have been obeyed. The next value of instruct-
ion wait time is then loaded for use in the following clock periods.
If an experiment is to be performed in which it is wished to deter-
mine ring traffic behaviour when a node sends a message on average,
after every n target instructions, then a second wait counter, the
send-wait counter, is decremented by 1 each time the instruction wait
counter reaches zero as shown in Figure A.S. Thus, if the send-wait
counter is loaded with a value of n, when this value reaches zero,
n target processor instructions would have been obeyed, and the host
processor then sends a message, and re-loads the send-wait counter
once more with the value n. Obviously, it is possible to obtain
processor-independent timings by specifying a hypothetical target
processor with a convenient value for the average instruction time.
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CONTROL OF THE SIMULATOR

Once the requirements for a particular simulation run have
been established by the monitor during the initialisation phase,
the simulation begins and the behaviour of the monitor, comms and

*, host processes is rigidly controlled by finite state machines (FSMs),
as shown in Figure A.9). When the monitor issues a clock pulse,
the clock is transmitted, using the tx primitive, to all the comms K,[
processes. The comms processes then use tx to start their own host .

- process FSM. The host/comms pair FSMs then perform a one-byte data
movement within their node, subject to the constraints necessary
for a token passing ring, and synchronising their activities with the
tx, rx primitives. When a host has completed its tasks for the current
clock period, it signals the fact that it has finished to its comms
process, and the comms process, in turn, signals to the monitor that
it too has finished. After all the comms processes have informed the .
monitor that they have finished, then the monitor performs its
activities, i.e. scanning for any faults, scanning the monitor
records, and then updating the simulation clock, at which time the
sequence of activities begins again.

FUTURE WORK

Once the simulator has been completely tested, and results have ,
been obtained for the token passing ring, then other structures will
be investigated. The host/comms interface will also be enhanced
to be consistent with the OS Reference Model. It can be seen in
Figure A.10(a) that, by introducing an extra next neighbour field
into the data structure, such that this forms a ring in the opposite
direction totheoriginal next neighbour field, and creating an extra
set of ring buffers, it is possible to simulate the behaviour of a
bidirectional ring. The queueing structure in the local memory of
the comms nodes can be kept unchanged, to decouple the host and comms
processes, and only the rules relevant to the particular protocol
to be studied need be changed.

Bus structures can also be studied as shown in Figure Al0(b),
by using the same data structure as for bidirectional rings, with
the exception that the ring is left unclosed. Thus data being sent
from a source node can move either left or right in the structure,
as appropriate, to reach the destination node. Obviously, the rules
for arbitration for control of the bus would take the place of the
rules relating to the control of the bidirectional ring. ,.

CONCLUSIONS

A simulator has been described which is capable of concurrently

simulating the behaviour of traffic on various network topologies,
using the global memory of CYBA-M to connect the processors of these
structures. It has also been shown that it is possible to tailor
the simulator to model a particular target system. Whilst it is
true that the processing power of CYBA-M is limited by the fact that
Intel 8080 microprocessors are used, the true value of simulating
on such a system is that a problem which is concurrent in nature
can be solved in a concurrent manner. It is also true that such
simulations could be performed on a uniprocessor, however, it is
believed that such a task would be more difficult, since there would
also be the added requirement of coordinating the process changes
in such a manner that data flowed in the correct sequences around
the structure.
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If, though, one really wished to use a very powerful uni-
processor, then if the topology were first simulated on CYBA-M, then
all that would be required would be to modify this version of the
simulator to include process changing, thus simplifying the uni-
processor task. For example, such an implementation could be
accomplished under UNIX, using fork to create extra instances of the
processes, and pipes to pass information between the processes and 'A

,y to perform synchronisation.
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APPENDIX B

THEORETICAL MODEL OF A BIDIRECTIONAL TOKEN PASSING RING

The main characteristic of a bidirectional token passing ring
is that it essentially consists of two independent token passing
rings. In the first ring, ring A, the token flows in a clockwise
direction and in the second ring, ring B, the token flows in an
anti-clockwise direction. Both rings operate in an identical manner
to a unidrectional token passing ring. The only problem to be
resolved is the case where both tokens appear in the same node at the
same time - a "token clash".

A number of alternative solutions exist:

(a) If the node has a message to transmit, it

(i) Selects the ring which gives the shortest path
length to the destination node.

(ii) Arbitrarily selects ring A or ring B.

(iii) Selects ring A then ring B in a fixed order.

In all cases the other token may be relayed directly to the next
node or retained in the node until a new message is ready to be trans-
mitted

(b) If the node does not have a message to transmit, it
can

Mi Relay both tokens

(ii) Relay one token

(iii) Relay no tokens

The chosen alternative will affect the ring performance. In
order to maintain throughput, the token(s) should not be retained in
the node. Thus, a simple theoretical model considers the bidirectional
ring as being two independent unidirectional rings. Therefore, the
theoretical model developed for the unidirectional ring can be extended
to the bidirectional ring.

The bidirectional model is based on the assumption that a
bidirectional ring can convey twice as many messages in a unit time
than a unidirectional ring. Therefore, the ring utilisation factor,
R, should lie in the range 0 to 2. Hence, the stability criterion
for the bidirectional ring is:

N +3S.
D. + 2 ... (B.1)

i 0

For all Dif 0 i 14-1, i 1~ 1>
3 i
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The corresponding mean scan time (MST) for the bidirectional
ring can be calculated from:

N + S.
MST= i N-1

2 - ui

i =0

i+j

Similarly, for an unstable bidirectional ring:

~Min (Tsat) = runc V...(B.3)

Mout (Tsat)= trunc -ST 2 ..... (B.4)

Q Min (Tsar) -Mout (Tsat) ..... (B.5)

Simulation experiments, similar to those performed for the
unidirectional ring, showed a close correlation between the simulation
model (now modified for a bidirectional ring) and theoretical modelresults (12). However, both models will be modified in the future '
to cater for the alternative viable solutions to token clash

problems.
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